Name:	Ker	1 (websi	te)

Date: Hour:

Chapter 6 Study Guide - Due Monday, March 18th

6.2: Matrix Multiplication, Inverses, Determinants

- Make sure you review...
 - How to multiply matrices on your calculator
 - When you can multiply matrices
 - How to find the inverse of a matrix
 - How to find the determinant of a matrix

**Inverses are only possible with <u>Square matrices (ex: 2×2, 3×3)</u>

** If your determinant equals zero, then <u>no inverse</u> exists

** If your determinant equals anything other than zero, then <u>there is an inverse</u>

Find AB and BA, if possible.

A=
$$\begin{bmatrix} 8 & 1 \end{bmatrix}$$
 B= $\begin{bmatrix} 3 & -7 \\ -5 & 2 \end{bmatrix}$
AB = $\begin{bmatrix} 19 & -54 \end{bmatrix}$
BA = \bigcirc

2)
$$A = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$
 $B = \begin{bmatrix} 6 & 0 & -1 \\ -4 & 9 \end{bmatrix}$ $A = \begin{bmatrix} 3 & 4 \\ -7 & 1 \end{bmatrix}$ $AB = \begin{bmatrix} 0 \\ 85 \end{bmatrix}$ $AB = \begin{bmatrix} 6 & 0 & -1 \\ -4 & 9 \end{bmatrix}$ $AB = \begin{bmatrix} 5 & 2 & -9 \\ -6 & 0 & 9 \end{bmatrix}$ $AB = \begin{bmatrix} 6 & 0 & 12 \\ 85 \end{bmatrix}$ $AB = \begin{bmatrix} -9 & 6 & 12 \\ -41 & -14 & 65 \end{bmatrix}$ $BA = \emptyset$

Determine whether A and B are inverse matrices. If they aren't, find the inverse of A.

$$A = \begin{bmatrix} 9 & 2 \\ 5 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 2 \\ 5 & -1 \end{bmatrix}$$

$$yes$$

$$A = \begin{bmatrix} 4 & -7 \\ 8 & -5 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -6 \\ 4 & 10 \end{bmatrix}$$

$$NO - A^{-1} = \begin{bmatrix} -0.5 & 0.6 \\ -0.7 & 0.8 \end{bmatrix}$$

Find A⁻¹, if it exists.

$$A = \begin{bmatrix} 5 & 2 & -1 \\ 4 & 7 & -3 \\ 1 & -5 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 & -4 \\ 3 & 6 & -5 \\ -2 & -8 & 1 \end{bmatrix} \begin{bmatrix} -34 & 29 & 9 \\ 7 & -6 & -7 \\ -12 & 10 & 3 \end{bmatrix}$$

Find the determinant of each matrix. Then, if it has an inverse, write the inverse. Round answers to the $^{9)}$ Γ_2 1 $^{-2}$ 1 $^{-2}$ 1 $^{-2}$ 1 $^{-2}$

8)
$$\begin{bmatrix} 12 & -9 \\ -4 & 3 \end{bmatrix}$$
 O $det=0$

9)
$$\begin{bmatrix} 3 & 1 & -2 \\ 8 & -5 & 2 \\ -4 & 3 & -1 \end{bmatrix}$$
 nearest tenth! $\begin{bmatrix} 0.1 & 0.5 & 0.7 \\ 0 & 1 & 2 \\ -0.4 & 1.2 & 2.1 \end{bmatrix}$

6.3: Solving Linear Systems using Inverses

- Make sure you review...
 - How to solve systems of equations using inverse matrices
 - Solving Linear-Nonlinear Systems by Graphing
 - Solving Linear-Nonlinear Systems by Substitution

Write the following system of equations in matrix form, AX = B. Then, solve each system of equations.

$$5x-2y=11$$
 $x=3$ $-4x+7y=2$ $y=2$

$$\begin{bmatrix} 5 & -2 \\ -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} \times \\ Y \end{bmatrix} = \begin{bmatrix} 11 \\ 2 \end{bmatrix}$$

13)
$$2x + y - z = 13$$
 $x = -6$ $x = -6$ $x = -6$ $x = -36$ $x = -36$ $x + 2y - 4z = -36$ $x + 6y - 3z = 12$ $x = -36$ $x + 6y + 5z = 11$ $x + 6y + 5z = 12$ $x + 6y + 5z = 11$ $x + 6y + 5z = 12$ $x + 6y + 5z = 11$ $x + 6y$

Make sure you review...

11) -3x + 5y = 33 = -1 = 12 -4x + y = 19 = 19 = 3 2x - 4y = -26 = -18 = 3

$$\begin{bmatrix} -3 & 5 \\ 2 & -4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 33 \\ -26 \end{bmatrix} \qquad \begin{bmatrix} -4 & 1 \\ 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 19 \\ -18 \end{bmatrix}$$

$$14)$$
 $X+2y=12$ $X=6$
 $3y-4z=25$ $y=3$
 $X+6y+z=20$ $z=-4$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 25 \\ 20 \end{bmatrix}$$

$$9x + 7y = -30$$
 $x = -1$
 $8y + 5z = 11$ $y = -3$
 $-3x + 10z = 73$ $z = 7$

- Finding Partial Fraction Decomposition when the degree in the numerator is SMALLER than the degree in the denominator
- Find Partial Fraction Decomposition when the degree in the numerator is GREATER THAN or EQUAL TO the degree in the denominator

Find the partial fraction decomposition of each rational expression.

$$\frac{17) \times +13}{\times^{2} + 7 \times +12} + 10 + -9 \times +4$$

Find the partial fraction decomposition of each improper rational expression.

$$\frac{3x^2 + 12x + 4}{x^2 + 2x}$$

$$\frac{19)}{x^{4} - 3x^{3} + x^{2} - 9x + 4}{x^{2} - 4x}$$

$$(x^{2}+x+5)+\frac{12}{x}+\frac{-1}{x-4}$$

6.5: Linear Optimization

- Make sure you review...
 - How to graph the constraints
 - How to determine the maximum/minimum values

Find the maximum and minimum values of the objective function f(x, y) and for what values of x and y they occur, subject to given constraints.

20)
$$f(x, y) = 8x + 2y$$

$$4x + 5y < 35 \rightarrow 5y < -4x + 35$$

 $x + 5y < 20$
 $y < -4x + 7$
 $y > 0$

$$f(x, y) = x - 2y$$

21)

4y7-3x+12 y7-34x+3

